
RedLeaf
Isolation and Communication in a Safe

Operating System
OSDI’ 20

University of California, Irvine
VMware Research

RedLeaf 1



TOC
1. Overview
2. Background
3. RedLeaf
4. Evaluation
5. Conclusion & Insight

TOC 2



1. Overview

Overview 3



Overview
• RedLeaf OS with novel isolation mechanism

• NO costly hardware-based isolation

• Relies on type and memory safety of Rust

• IDL that supports cross-domain call proxying

• (Engineering) POSIX-subset, NVMe, 10Gbps Intel ixgbe

network

Overview 4



2. Background

Background 5



2.1如何评估一个安全的系统
• Domains: a unit of resources and info (!"#$%&'()*)

• Domains can be cleanly terminated

• The faults and crashes in one domain do not affect other

domains

• Shared objects cause many problems !

Background:!"#$%&'()*+ 6



2.2 History of Isolation

Background: History of Isolation 7



2.2 History of Isolation

Background: History of Isolation 8

- 1976
- Influence Unix
- Subsystem Isolation



2.2 History of Isolation

Background: History of Isolation 9

- IOMMU, Rings



2.2 History of Isolation

Background: History of Isolation 10

- First language-based isolation



2.2 History of Isolation

Background: History of Isolation 11

- “Language safety alone is not sufficient”



2.2 History of Isolation

Background: History of Isolation 12

- Systems remained monolithic
- Isolation was EXPENSIVE !!



2.3 Isolation Mechanisms &
Drawbacks
• Hardware Isolation & Latency

• Segmentation (46 cycles)
• Page table isolation (797 cycles)
• VMFUNC (396 cycles)
• Memory protection keys (20-26 cycles)

• Language based isolation
• Compare drivers written (DPDK-style) in a safe high-level language (C, 

Rust, Go, C#, etc.)
• Managed runtime and Garbage collection (20-50% overhead on a

device-driver workload) 

Background: Isolation Mechanisms & Drawbacks 13



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 14

← a pointer



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 15



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 16



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 17



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 18



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 19



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 20



2.4 Traditional Safe Languages

Background: Traditional Safe Languages 21

HUGE Runtime Overhead



2.5 Rust

Background: Rust 22



2.5 Rust

Background: Rust 23



2.5 Rust

Background: Rust 24



2.5 Rust

Background: Rust 25



2.5 Rust

Background: Rust 26

“MOVE” Semantic



2.5 Rust

Background: Rust 27

Compile-time GC √



2.5 Rust

Background: Rust 28

• Mostly use Rust as a drop-in replacement for C

• Numerous possibilities

• Fault Isolation

• Transparent device-driver recovery

• Safe Kernel extensions

• Fine-grained capability-based access control etc. 



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 29

• Fault Isolation as is mentioned before:

• Domains can be cleanly terminated

• The faults and crashes in one domain do not affect

other domains



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 30

SPIN OS using modula-3 pointers



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 31



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 32



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 33



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 34



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 35



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 36

Fail to provide fault isolation



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 37

J-Kernel, KaffeOS



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 38



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 39



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 40



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 41



2.6 Fault Isolation in Language-
based Systems: Deep Copy

Background: Fault Isolation in Language-based Systems 42

Overhead



2.6 Fault Isolation in Language-
based Systems: Singularity

Background: Fault Isolation in Language-based Systems 43



2.6 Fault Isolation in Language-
based Systems: Singularity

Background: Fault Isolation in Language-based Systems 44



2.6 Fault Isolation in Language-
based Systems: Singularity

Background: Fault Isolation in Language-based Systems 45



2.6 Fault Isolation in Language-
based Systems: Singularity

Background: Fault Isolation in Language-based Systems 46

• Single Ownership
• Zero-copy



2.7 Summary of Background

Summary of Background 47

Secure OS

Isolation

History
Isolation
Mechanism

Hardware:
expensive

Language-
based:
No GC

Traditional
Safe

Language
Rust

Fault Isolation
in Language-
based System

Single
Ownership



3. RedLeaf

RedLeaf 48



3.1 Architecture

RedLeaf: Architecture 49



3.1 Architecture

RedLeaf: Architecture 50



3.1 Architecture

RedLeaf: Architecture 51



3.1 Architecture

RedLeaf: Architecture 52



3.2 * Trust Base

RedLeaf: Trust Base 53

• Rust compiler

• Rust core libraries (crates)

• Non-malicious devices (can be spared by IOMMU)



3.3 Fault Isolation

RedLeaf: Fault Isolation 54

• After a domain crash

• Unwind all threads running inside

• Subsequent invocations return error

• All resources are deallocated

• Other threads continue execution



3.4 Heap Isolation

RedLeaf: Heap Isolation 55



3.4 Heap Isolation

RedLeaf: Heap Isolation 56



3.4 Heap Isolation

RedLeaf: Heap Isolation 57

Domains never hold pointers to other domains



3.4 Heap Isolation

RedLeaf: Heap Isolation 58



3.4 Heap Isolation

RedLeaf: Heap Isolation 59

Special shared heap for passing objects
between domains



3.4 Heap Isolation

RedLeaf: Heap Isolation 60



3.4 Heap Isolation

RedLeaf: Heap Isolation 61

1. Short for Remote Reference
2. Like Rust’s Box<T>
3. Stores metadata of RRef<T> on the heap



3.5 Exchangeable Types

RedLeaf: Exchangeable Types 62

• Exchangeable Types can be:

• RRef<T> itself

• A subset of Rust primitive Copy types (not references or pointers)

• Composite types constructed out of exchangeable types

• References to traits with methods that receive exchangeable types



3.5 Exchangeable Types

RedLeaf: Exchangeable Types 63



3.5 Exchangeable Types

RedLeaf: Exchangeable Types 64

Objects in shared heap can only be
exchangeable types



3.5 Exchangeable Types

RedLeaf: Exchangeable Types 65



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 66



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 67



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 68

• Owner Domain
• Reference Count



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 69



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 70

• RRef<T> can be passed between domains
• “Move” Semantic



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 71



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 72

Global Registry of allocated objects



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 73



3.7 Cross-domain Call Proxying

RedLeaf: Cross-domain Call Proxying 74



3.7 Cross-domain Call Proxying

RedLeaf: Cross-domain Call Proxying 75

• Check if domain is alive
• Create continuation
• Moves ownership of
RRef<T>



3.7 Cross-domain Call Proxying

RedLeaf: Cross-domain Call Proxying 76

• Where does the proxy comes from ?
• IDL (Interface Definition Language)



3.8 IDL & IDL Compiler

RedLeaf: IDL & IDL Compiler 77

Example: Block Device Domain Interface



3.8 IDL & IDL Compiler

RedLeaf: IDL & IDL Compiler 78

Interface

Create a domain



3.8 IDL & IDL Compiler

RedLeaf: IDL & IDL Compiler 79

BDev domain



3.8 IDL & IDL Compiler

RedLeaf: IDL & IDL Compiler 80

Static Analysis on AST
to extract interface definition



3.9 Summary of RedLeaf

RedLeaf: Summary of RedLeaf 81

Architecture

Trust Base

Fault Isolation Heap Isolation

RRef<T>

Exchangeable
Types

Ownership
Tracking

Cross-domain
Call Proxying

IDL & IDL
Compiler



3.10 Device Driver Recovery

RedLeaf: Device Driver Recovery 82



3.10 Device Driver Recovery

RedLeaf: Device Driver Recovery 83

• Warps the interface to expose an
identical interface

• Interposes on all communication



3.10 Device Driver Recovery

RedLeaf: Device Driver Recovery 84



3.10 Device Driver Recovery

RedLeaf: Device Driver Recovery 85



3.10 Device Driver Recovery

RedLeaf: Device Driver Recovery 86

Transparent Device
Driver Recovery √



4. Evaluation

Evaluation 87



4.1 Communication Cost

Evaluation: Communication Cost 88



4.2 Language Overhead

Evaluation: Language Overhead 89

• Hashtable - (FNV hash, open addressing, <8B, 8B>)

• C, Idiomatic Rust, C-style Rust,

• C-style Rust: No higher order functions usize, usize

• Idiomatic Rust - Option<(usize, usize)>

• Vary the size (212 to 226 at 75% full)



4.2 Language Overhead

Evaluation: Language Overhead 90



4.3 Device Drivers: ixgbe

Evaluation: Device Drivers 91



4.3 Device Drivers: NVMe

Evaluation: Device Drivers 92



4.4 Application Test: Maglev

Evaluation: Application Test 93



4.4 Application Test: Httpd

Evaluation: Application Test 94



4.4 Application Test: KV-Store

Evaluation: Application Test 95



4.5 Device Driver Recovery

Evaluation: Device Driver Recovery 96



5. Conclusion & Insight

Conclusion & Insight 97



5.1 Conclusion
• Heap isolation, exchangeable types, ownership tracking, interface 

validation, cross-domain call proxying 

• Provides a collection of mechanisms for enabling isolation

• A step forward in enabling future system architectures

• Secure kernel extensions

• fine-grained access control

• transparent recovery

“Official” Conclusion 98


