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Overview
• RedLeaf OS with novel isolation mechanism

• NO costly hardware-based isolation

• Relies on type and memory safety of Rust

• IDL that supports cross-domain call proxying

• (Engineering) POSIX-subset, NVMe, 10Gbps Intel ixgbe

network
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2.1如何评估一个安全的系统
• Domains: a unit of resources and info (!"#$%&'()*)

• Domains can be cleanly terminated

• The faults and crashes in one domain do not affect other

domains

• Shared objects cause many problems !
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- 1976
- Influence Unix
- Subsystem Isolation
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- IOMMU, Rings
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- First language-based isolation



2.2 History of Isolation
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- “Language safety alone is not sufficient”



2.2 History of Isolation
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- Systems remained monolithic
- Isolation was EXPENSIVE !!



2.3 Isolation Mechanisms &
Drawbacks
• Hardware Isolation & Latency

• Segmentation (46 cycles)
• Page table isolation (797 cycles)
• VMFUNC (396 cycles)
• Memory protection keys (20-26 cycles)

• Language based isolation
• Compare drivers written (DPDK-style) in a safe high-level language (C, 

Rust, Go, C#, etc.)
• Managed runtime and Garbage collection (20-50% overhead on a

device-driver workload) 
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2.4 Traditional Safe Languages
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← a pointer
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2.4 Traditional Safe Languages
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HUGE Runtime Overhead
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2.5 Rust
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“MOVE” Semantic



2.5 Rust
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Compile-time GC √



2.5 Rust
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• Mostly use Rust as a drop-in replacement for C

• Numerous possibilities

• Fault Isolation

• Transparent device-driver recovery

• Safe Kernel extensions

• Fine-grained capability-based access control etc. 



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 29

• Fault Isolation as is mentioned before:

• Domains can be cleanly terminated

• The faults and crashes in one domain do not affect

other domains
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SPIN OS using modula-3 pointers



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 31



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 32



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 33



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 34



2.6 Fault Isolation in Language-
based Systems

Background: Fault Isolation in Language-based Systems 35



2.6 Fault Isolation in Language-
based Systems
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Fail to provide fault isolation



2.6 Fault Isolation in Language-
based Systems: Deep Copy
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J-Kernel, KaffeOS
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2.6 Fault Isolation in Language-
based Systems: Deep Copy
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Overhead
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2.6 Fault Isolation in Language-
based Systems: Singularity
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• Single Ownership
• Zero-copy



2.7 Summary of Background
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Secure OS

Isolation

History
Isolation
Mechanism

Hardware:
expensive

Language-
based:
No GC

Traditional
Safe

Language
Rust

Fault Isolation
in Language-
based System

Single
Ownership
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3.2 * Trust Base
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• Rust compiler

• Rust core libraries (crates)

• Non-malicious devices (can be spared by IOMMU)



3.3 Fault Isolation
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• After a domain crash

• Unwind all threads running inside

• Subsequent invocations return error

• All resources are deallocated

• Other threads continue execution
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3.4 Heap Isolation
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Domains never hold pointers to other domains
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3.4 Heap Isolation
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Special shared heap for passing objects
between domains
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3.4 Heap Isolation
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1. Short for Remote Reference
2. Like Rust’s Box<T>
3. Stores metadata of RRef<T> on the heap



3.5 Exchangeable Types
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• Exchangeable Types can be:

• RRef<T> itself

• A subset of Rust primitive Copy types (not references or pointers)

• Composite types constructed out of exchangeable types

• References to traits with methods that receive exchangeable types
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3.5 Exchangeable Types
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Objects in shared heap can only be
exchangeable types
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• Owner Domain
• Reference Count
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3.6 Ownership Tracking
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• RRef<T> can be passed between domains
• “Move” Semantic
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3.6 Ownership Tracking
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Global Registry of allocated objects



3.6 Ownership Tracking

RedLeaf: Ownership Tracking 73



3.7 Cross-domain Call Proxying
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3.7 Cross-domain Call Proxying
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• Check if domain is alive
• Create continuation
• Moves ownership of
RRef<T>



3.7 Cross-domain Call Proxying
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• Where does the proxy comes from ?
• IDL (Interface Definition Language)



3.8 IDL & IDL Compiler
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Example: Block Device Domain Interface
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Interface

Create a domain
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BDev domain



3.8 IDL & IDL Compiler
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Static Analysis on AST
to extract interface definition



3.9 Summary of RedLeaf
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Architecture

Trust Base

Fault Isolation Heap Isolation

RRef<T>

Exchangeable
Types

Ownership
Tracking

Cross-domain
Call Proxying

IDL & IDL
Compiler
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• Warps the interface to expose an
identical interface

• Interposes on all communication
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3.10 Device Driver Recovery
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Transparent Device
Driver Recovery √
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4.1 Communication Cost
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4.2 Language Overhead
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• Hashtable - (FNV hash, open addressing, <8B, 8B>)

• C, Idiomatic Rust, C-style Rust,

• C-style Rust: No higher order functions usize, usize

• Idiomatic Rust - Option<(usize, usize)>

• Vary the size (212 to 226 at 75% full)
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4.3 Device Drivers: ixgbe
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4.3 Device Drivers: NVMe
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4.4 Application Test: Maglev
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4.4 Application Test: Httpd
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4.4 Application Test: KV-Store
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4.5 Device Driver Recovery
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5. Conclusion & Insight
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5.1 Conclusion
• Heap isolation, exchangeable types, ownership tracking, interface 

validation, cross-domain call proxying 

• Provides a collection of mechanisms for enabling isolation

• A step forward in enabling future system architectures

• Secure kernel extensions

• fine-grained access control

• transparent recovery
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