
Practical Protection Design of Forward-Edge
Control-Flow Integrity for Linux Kernel

Jinmeng Zhou
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

jinmengzhou@zju.edu.cn

Ziyue Pan
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

ziyuepan@zju.edu.cn

Xun Xie
College of Computer Science and Technology

Zhejiang University
Hangzhou, China
xiexun@zju.edu.cn

Wenbo Shen*
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

shenwenbo@zju.edu.cn

Abstract—The operating system kernel is the security founda-
tion for the entire system. Yet control flow hijacking is a prevalent
attack method that continually threatens its security. Control-
Flow Integrity (CFI) defends against these attacks by enforcing
execution compliance with a pre-computed Control-Flow Graph
(CFG). The kernel is very sensitive to performance overhead,
challenging the CFI scheme design. The existing Clang-CFI is
software-based, making it the general solution widely deployed
as the de facto CFI. However, it is coarse-grained, and its CFI
scheme design cannot be easily applied to fine-grained CFGs.

To provide CFI for fine-grained CFG, we propose a flexible
protection design, FLEX-CFI. This software-based approach
enhances generality by eliminating hardware dependencies. Our
CFI design is practical and applicable to various fine-grained
CFGs with negligible overhead. We implemented a prototype
of FLEX-CFI based on Clang/LLVM and evaluated it on the
Android ARM64 Linux kernel using a real-world hardware
device. The results show that FLEX-CFI effectively secures 92%
of all indirect call-sites in the allyesconfig kernel configuration
while reducing target functions by 93.5% and imposing close-to-
zero performance overhead.

Index Terms—Control Flow Integrity, Practical Protection
Design, Linux kernel

I. INTRODUCTION

Control-flow integrity (CFI) has been an active research area
since its inception, from early proposals to recent state-of-the-
art works [1], [2], [3], [4], [5], [6], [7]. CFI prevents control-
flow hijacking by ensuring that program execution follows
a pre-computed control-flow graph (CFG). CFI includes an
important part: forward-edge CFI, which enforces that function
pointers of indirect calls only jump to valid targets.

Current forward-edge CFI falls into two categories. First,
dynamic CFI analyzes call graphs by tracking indirect calls
and their valid targets at runtime [8], [9], [10], [11], [12],
typically leveraging hardware features like Intel Process Tracer
(PT) and Last Branch Record (LBR). However, preserving
extensive runtime context information impacts practicality

*Wenbo Shen is the corresponding author

and performance, especially for large-scale programs like the
Linux kernel that are performance-sensitive. Second, static
CFI, which builds call graphs through static analysis and
instruments indirect calls to prevent control flow hijacking,
remains promising [6] with several recent advances [13], [14],
[15], [16], [6], [7]. Commercial compilers [17] and major
software vendors like Microsoft and Google [18], [17], [19]
have adopted this approach.

Static CFI solutions use either software or hardware imple-
mentations [20]. Hardware-based approaches achieve precise
CFI with acceptable overhead [13], [14], [16], [21], [22], [6],
[7] using features like ARM PA, Intel CET, and Intel MPK.
However, these features limit deployability across platforms.
For example, PA on ARM cannot run on x86, while some
features, e.g., Intel MPX used in OS-CFI [14], have been
deprecated. Software-based static CFI is platform-independent,
but the current widely-supported mechanism is coarse-grained:
Clang-CFI [17] matches function signatures of defined func-
tions with indirect call targets. Due to its low overhead and
simple implementation, Clang-CFI is integrated into Linux
kernels. However, its CFI design is limited to coarse-grained
call graphs and can not directly apply to finer-grained ones.
Existing work [23] has already proved that coarse-grained CFI
is ineffective in stopping some real-world exploits.

Recent work proposes fine-grained CFGs, but practical
CFI enforcement with acceptable overhead remains elusive.
Approaches like KIRIN [24], MLTA [25], and TFA [26]
generate fine-grained CFGs but lack efficient enforcement
mechanisms. FINE-CFI [15] incorporates struct-based analysis
but omits propagation between jump-target groups, resulting
in low precision (i.e., only protects 4,074 indirect calls/jumps
with 13.14 average targets). Additionally, it leverages indexed
hooks to protect indirect calls/jumps in the Linux kernel, which
creates a jump table for each indirect call and increases the
number of compiled instructions.

To bridge the gap between granularity and performance

icall:

;; start address of jump table
1041b30c: adrp x9, 1144f000
1041b310: add x9, x9, #0xd8c
;; x8 contains the icall-site target
1041b314: sub x9, x8, x9
1041b318: ror x9, x9, #2
1041b31c: cmp x9, #0x26
;; cfi check fail
1041b320: b.cs 1041b37c
;; …
1041b32c: blr x8

1144fd8c <stub_ext4_file_read_iter>:
1144fd8c: b 102b3d9c <ext4_file_read_iter>
1144fd90 <stub_nfs_file_read>:
1144fd90: b 102c1be4 <nfs_file_read>
;; …
1144fe1c <stub_nfs_file_write>:
1144fe1c: b 1125ff78 <nfs_file_write>
1144fe20 <stub_ext4_file_write_iter>:
1144fe20: b 106d5350 <ext4_file_write_iter>

file->f_op->write_iter(kio,iter);

generate jump tables

static ssize_t ext4_file_read_iter
(. . .) { /* ... */ }

static ssize_t ext4_file_write_iter
(. . .){ /* ... */ }

base

length

c code

asm code

stub:

static ssize_t nfs_file_read
(. . .){ /* ... */ }

static ssize_t nfs_file_write
(. . .){ /* ... */ }

const struct file_operations ext4_file_operations{
/*...*/
.write_iter = ext4_file_write_iter,
/*...*/

}

function’s
user:

replace the functions with corresponding stubs

Add
boundary

checks

Fig. 1: Clang-CFI protection and its large jump table.

overhead, we propose a practical and flexible CFI design,
FLEX-CFI. FLEX-CFI enforces a smaller target of indirect
calls with a close-to-zero performance overhead. This design
is flexible and can be applied to any fine-grained CFG.
According to the CFG, target functions are distinguished into
different small groups (flow-in analysis), and an indirect call
is forced to jump to a group (flow-out analysis). To achieve
higher precision, FLEX-CFI also integrates group-to-group
analysis. As a result, FLEX-CFI can create a jump table for
each group instead of each indirect call, i.e., different indirect
calls can share the same jump table to reduce the number
of compiled instructions. As an implementation example, it
leverages the fine-grained CFG by matching struct-fields [25],
[24]. The evaluation results show that FLEX-CFI protects 92%
of all indirect call-sites while reducing 93.5% of possible jump
targets and introducing close-to-zero performance overhead.

In summary, this paper has the following contributions:
• New techniques: We propose the flow-in, flow-out, and

group-to-group analysis to analyze the complex data flow
of target function groups.

• Prototype implementation: We have implemented a pro-
totype of FLEX-CFI based on a Clang/LLVM LTO pass,
which contains 3,000 lines of C++ code.

• Practical evaluation: We have evaluated FLEX-CFI on
Android ARM64 Linux kernel with a real hardware board.
The evaluation results show that FLEX-CFI can protect
92% of all indirect call-sites for allyesconfig kernel, while
reducing 93.5% of possible jump targets, and introducing
close-to-zero performance overhead.

II. BACKGROUND: CLANG-CFI

Clang-CFI confines targets of every indirect call (icall for
short) by matching the type of an icall with the dereferenced
value. A function type (often known as function signature) is
defined by the types of its parameters and return value. When
resolving an icall, Clang-CFI retrieves the function type of its
target and only allows the pointer to point to the functions with
the same type. This approach has been practically applied to
harden C/C++ programs and Linux kernels. In the following
of this section, we use an example to illustrate how it works.

Figure 1 shows an icall protected by Clang-CFI in ARM64
kernel. An icall is typically implemented as a blr instruction,
its c code is file->f_op->write_iter in this example. Clang-
CFI checks if icall target is in the valid target set before
allowing the indirect jump. To check the target function(s)
in constant time, Clang-CFI creates a jump table for a set of
functions that share the same type. Each jump table has its
base address and length. Therefore, Clang-CFI can determine
whether the jump target is good or not by checking whether the
called address is inbound. To accommodate different function
lengths, Clang-CFI creates a stub for each jump table entry
with fixed 4 bytes. Stub, in turn, jumps to the actual function,
so calling a stub is equivalent to calling a function.

The CFI enforcement in Clang-CFI can be divided into
3 steps: (1) Generating a jump table for the same type
of functions. For example, in Figure 1, the jump table
for the function type ssize_t (struct kiocb *iocb, struct

iov_iter *to). (2) Replacing functions with a stub at the
user, then the stub propagates in the kernel. In Figure 1,
there is a user of ext4_file_write_iter where the address
of stub_ext4_file_write_iter is stored to write_iter. (3)
Adding boundary check for each icall. Clang-CFI retrieves
the function type of the icall target to obtain its corresponding
jump table. Then Clang-CFI takes out the stub that icall calls
to. If the address of the stub is in the jump table by comparing
the base address and length of the jump table, this icall is valid
and passes the CFI check. Otherwise, there will be a CFI check
failure. As shown in Figure 1, the base address of the jump
table is 0xffff80001144fd8c, and there are 0x26 stubs in the
jump table. If the check is successful, it will go to blr and
jump to the target ext4_file_write_iter finally.

III. SYSTEM DESIGN

We propose FLEX-CFI, which enhances CFI security by
narrowing valid target scopes while maintaining performance
efficiency. FLEX-CFI enforces an icall to a small-sized group
of target functions, requiring data-flow analysis for proper
group usage. The more fine-grained the groups, the more
complex the data flow between them.

FLEX-CFI separates all address-taken functions into smaller
groups, offering fine-grained protection. Using the same exam-

CFI Instrumentation
(§3.6)

Struct-Field Analysis

vmlinux
IR

Flow-In
Analysis
(§3.3)

Flow-Out
Analysis

(§3.4)

Group-to-Group
Assignment Handling

(§3.5)

Jump-Table
Generation

Stub-Func
Replacement

Jump-Table Selection
for Boundary Check

CFI
Instrumented

Kernel

Fig. 2: Overview of instrumenting kernel using FLEX-CFI.

ple shown in Figure 1, FLEX-CFI builds a jump table for each
field in struct file_operations. The separate jump tables for
read_iter and write_iter are shown in Figure 1, containing
read and write interfaces, respectively. To demonstrate our
flexible CFI design, we select the struct-field matching method
as an implementation case to generate the fine-grained CFG.
The following will use struct-field to represent a group. As
illustrated in Figure 2, FLEX-CFI takes kernel IR file as input
and outputs the CFI-instrumented kernel.

A. Flow-in Analysis
In flow-in analysis, FLEX-CFI analyzes all functions that

flow into a group, i.e., struct-field. The stubs of these functions
compose the jump table for this group, which guides the jump
table generation in §III-D1. A function address can enter a
struct-field in two ways: (1) directly through initialization or
assignment, or (2) indirectly via an intermediate variable V .
For untraceable cases, we fall back to the type-based approach,
placing them in signature-matched jump tables.

1) Direct Flow-in: First, FLEX-CFI analyzes all users of
the address-taken function and finds the struct-fields that are
directly assigned by these functions. Initialization or assign-
ment can store a function in a certain struct-field. However,
the representations of the two storage methods are different
in IR: a struct type variable with initial value(s) becomes a
global variable in IR even if it is a local variable in the source
code. The assignment of a function pointer to a struct-field in
source code converts to a store instruction in IR. Based on
these above observations, the two cases are treated separately.

Initialization. FLEX-CFI traverses all global variable defini-
tions that are struct variables with at least one function pointer
field initialized. FLEX-CFI records the struct-field, the initial-
ized function, and its global variable for each initialization.

Assignment. FLEX-CFI collects users of address-taken func-
tion to filter and analyze store instructions. If a function stores
to a field of struct-field, FLEX-CFI records the struct-field, the
function, and the user (store instruction).

2) Indirect Flow-in: Starting from a struct-field, FLEX-
CFI backward analyzes all variables V assigned to it. After
that, FLEX-CFI uses an intra-procedural analysis to backtrace
data flow of V , i.e., traces the value flow into V , which is
divided into two cases: (1) When V is assigned by a function
address, this function belongs to the group of this struct-
field. As the assignment of the function’s user, serving as the

1 struct musb_io {
2 /* ... */
3 u32 (*busctl_offset)(u8 epnum, u16 offset);
4 };
5
6 struct musb_platform_ops {
7 /* ... */
8 u32 (*busctl_offset)(u8 epnum, u16 offset);
9 };

10
11 struct musb {
12 /* ... */
13 struct musb_io io;
14 const struct musb_platform_ops *ops;
15 /* ... */
16 };
17
18 static int musb_init_controller(struct device *dev, int

nIrq, void __iomem *ctrl) {↪→
19 /* ... */
20 struct musb *musb;
21 /* ... */
22 if (musb->ops->busctl_offset)
23 musb->io.busctl_offset = musb->ops->busctl_offset;
24 /* ... */
25 }

Fig. 3: An example of group-to-group assignment.

propagation source, FLEX-CFI records it to help locate the
users that should be replaced by the stub in this struct-field’s
jump table. (2) When V comes from another struct-field, it is
an indirect propagation between different struct-fields, which
will be discussed in §III-C.

B. Flow-out Analysis

In the flow-out analysis, FLEX-CFI analyzes all data flows
that flow out from a group, i.e., struct-field. As a result, it
separates different icalls based on the groups. So it helps
determine the corresponding jump table at the icall’s boundary
checking. Similarly, flow-out analysis divides icalls into two
categories based on which struct-field the function pointers are
retrieved: (1) The function pointers directly come from struct-
fields. (2) The function pointers are standalone variables V ,
and V come from struct-fields. Due to space constraints, we
will not go into detail. Note that if the target of an icall is not
related to any groups within our intra-procedural analysis, we
will fall back to the type-based approach for this icall.

C. Group-to-Group Assignment Handling

After stub replacement, assignments between groups are
effectively assignments of stubs in different jump tables.
FLEX-CFI ensures each stub’s address remains within its jump
table for proper CFI checks. Assignments within the same
group (i.e., struct-field) require no special handling; only cross-
group assignments need to be managed.

If one struct-field is stored to another struct-field directly
or indirectly, FLEX-CFI merges their jump table and treats
these two struct-fields as the same one. When stub re-
placement is done, this assignment assigns a stub in one
jump table to another struct-field. Such as the struct-field
assignment at line 23 in Figure 3: musb->io.busctl_offset

=musb->ops->busctl_offset. As the struct-fields hold the
stub address, the assignment between struct-field leads to
the propagation of stubs. stub_ops represents a stub for

TABLE I: Average jump target number comparison.

Config iCalls Ave.Clang Ave.FLEX Reduce ratio
allyesconfig 165.7k 186.9 12.08 93.5%

defconfig 19.8k 34.8 6.93 80.1%
boardconfig 12k 11.4 5.49 51.8%

TABLE II: Statistics of different categories of indirect calls.

Category allyesconfig defconfig boardconfig
From non-struct 7.1k (4%) 2.5k (10%) 2.5k (15%)

Leaked 7.2k (4%) 2.3k (9%) 1.7k (11%)
From Has Target 152.7k (85%) 16.5k (67%) 7.3k (45%)
struct No Target 13k (7%) 3.3k (14%) 4.7k (29%)

FLEX-CFI 165.7k (92%) 19.8k (81%) 12k (74%)
All icalls 180k 24.6k 16.2k

musb_platform_ops->busctl_offset, stub_io represents the
other. This assignment leads to the stub_io being replaced
by stub_ops. When musb->io.busctl_offset is called, icall
target has been replaced by stub_ops, causing a CFI failure.
Therefore, FLEX-CFI handles this assignment by merging the
set of target functions of them struct-fields, and recording
equivalence sets to store the merged struct-fields.

D. CFI Instrumentation

The CFI instrumentation in FLEX-CFI is roughly the same
as in Clang-CFI, involving three steps.

1) Jump Table Generation: FLEX-CFI takes out the target
functions of each group, i.e., struct-field. As all functions are
already stored in this map in §III-A, FLEX-CFI uses the results
to generate jump tables directly. For example in Figure 1,
FLEX-CFI builds jump tables for read_iter and write_iter

of struct file_operations separately. The length of these two
tables is smaller than the Clang-CFI type-based jump table.

2) Stub Replacement: In flow-in analysis (§III-A), function
users are recorded when a function flows into a struct field,
allowing FLEX-CFI to determine the appropriate stub replace-
ment. If a user is already recorded, the function is replaced
with the corresponding stub in the struct-field jump table. For
example, in Figure 1, one user of ext4_file_write_iter is
initialized to the field write_iter of struct file_operations.
The function will be replaced by stub_ext4_file_write_iter

in the jump table of this struct-field.
3) Jump Table Selection for Boundary Check: At each icall,

FLEX-CFI needs to instrument boundary checks in three steps
(Figure 1): (1) obtain the target address and jump table start
address, (2) compute the offset by subtracting the start address
from the target, and (3) divide the offset by the stub size
to compare with the jump table size. If the result is within
bounds, the jump is allowed; otherwise, FLEX-CFI triggers
CFI failure handling.

IV. EVALUATION

We evaluate FLEX-CFI in two aspects: (1) Effectiveness.
A key measure of CFI’s effectiveness is its ability to minimize
the number of indirect call targets. Our evaluation quantifies
the average reduction in jump target numbers achieved by
FLEX-CFI in §IV-A. (2) Performance Overhead. We assess

the performance overhead of FLEX-CFI by conducting tests
on real hardware, with findings presented in §IV-B.

Experimental Setup. FLEX-CFI compiles the kernel using
three configurations: defconfig, allyesconfig and configuration
for DragonBoard 845c [27] (boardconfig for short). We only
change the configurations by enabling CFI and disabling
ThinLTO. Given that FLEX-CFI does not support virtual dy-
namic shared objects, we disable the slow path in CFI as well.
The allyesconfig is chosen because it enables as many modules
as possible, which stress-tests FLEX-CFI. We compile the
kernel with the configuration of DragonBoard 845c to test
FLEX-CFI on a real board. The default optimization level
for the kernel is O2. We instrument the kernel using FLEX-
CFI on the machine with Debian 10, x86 64 (Linux kernel
4.19.118-2), Intel Core i7-8700 3.20GHz (6 cores), and 32GB
DRAM. DragonBoard 845c consists of a custom 64-bit ARM
v8-compliant octa-core CPU, 4GB DRAM, and 64GB storage.
A. Effectiveness

The main goal of FLEX-CFI is to shrink the jump table to
reduce potential jump targets based on a precise call graph
that has been computed. We assess the security effectiveness
of our tool by comparing the indirect calls enforced by security
measures with the outcomes derived from the computed call
graph [25], [24]. The results show that we can protect the call
graph almost as precisely as the one provided.
Average jump target numbers. Table I shows the average
jump target number. Column iCalls for FLEX-CFI denotes
how many icalls FLEX-CFI can protect. Clang-CFI (i.e., the
one-layer type analysis in [25]) matches function signatures.
Its average target number is 186.9 for allyesconfig. The
number of FLEX-CFI is 12.08, reducing 93.5% of possible
jump targets. FLEX-CFI reduces 80.1% for the defconfig and
reduces 51.8% for the boardconfig.
Ratio of protected icalls. The ratios of icalls protected by
FLEX-CFI are shown in Table II. Row From struct denotes
the number of icalls whose targets come from struct-fields
(groups). Sub-row Leaked denotes the number of unprotected
calls (i.e., the untraceable stubs that uncontrollably flow out
of struct-field). For the allyesconfig, 180k icalls in the whole
kernel among which 173k icall targets come from struct-fields.
Among them, FLEX-CFI identifies that 152.7k icalls have
targets, while 13k icalls have no target. Therefore, FLEX-CFI
can protect 165.7k icalls in total with a ratio of 92%. For these
calls without targets, we manually checked 200 of them and
found that they were not assigned/initialized with functions
indeed. For defconfig and boardconfig, FLEX-CFI can protect
81% and 74% icalls, respectively.
B. Performance Overhead

The experiments are conducted using UnixBench. We com-
pile three kernel settings: without CFI, with Clang-CFI, and
with FLEX-CFI. We replace the kernel with different kernel
settings and run UnixBench on Android 12. In order to keep
the experimental environment as consistent as possible, all
boards are placed in the same place and all experiments are
conducted at the same time. We run tests for 10 rounds and

Without CFI
Clang-CFI
FLEX-CFI

Without CFI
Clang-CFI
FLEX-CFI

(a) Result of single process.

Without CFI
Clang-CFI
FLEX-CFI

Without CFI
Clang-CFI
FLEX-CFI

(b) Result of multiple processes.

Fig. 4: Result of UnixBench. The x-axis represents different
test items, and the y-axis represents the score of the test item
(a higher score means better performance).

cool down the board for 10 minutes after each round. The final
scores are the average of 10 rounds the results.

The result is shown in Figure 4. FLEX-CFI shows similar
performance to Clang-CFI on both single process and multiple
processes tests in most cases. The impact of CFI is minimal
because of optimizations, which is consistent with the Clang-
CFI performance results from Google [28], [19]. The average
performance overhead of FLEX-CFI ranges from -3.5% to
1.8% for single process test and from -3.95% to 2.6% for
multiple processes test. Overall, FLEX-CFI has a close-to-zero
performance overhead.

Comparison with existing works. We compare FLEX-CFI
with two kinds of software-based CFI protection methods,
and non-general hardware-based CFI methods are out of
scope. First, TyPro [29] uses switch/case to traverse all target
candidates, and its performance overhead is proportional to
the number of indirect call targets. However, FLEX-CFI pro-
tects each indirect call with the same performance overhead
(because of a fixed number of CFI instructions), regardless
of the number of target functions. Second, FINE-CFI [15]
uses indexed hooks, which have close-to-zero overhead about
indirect call protection, but it has lower precision due to the
lack of propagation analysis between groups.

V. LIMITATION

Unprotected Cases. FLEX-CFI skips protection for un-
traceable groups, such as when function targets are stored in
globals or function parameters. This analysis requires interpro-
cedural points-to analysis, which is too expensive to perform
on large codebases like Linux kernel. Similar to MLTA [25],
FLEX-CFI is unable to protect two kinds of icalls. First, the
type of an icall is a generic pointer type (e.g., void *). Second,
the icall’s target that is ever used for arithmetical computation.

False Positive. FLEX-CFI merges the jump tables of groups
when there is a flow between the groups, which may lead to
false positives (e.g., false targets). We believe the combination
of indexed hooks [30] can mitigate this problem. It creates a
stub copy in each group to avoid merging when dealing with
too many positives. This keeps runtime performance overhead
low but may increase the compiled binary size.

VI. RELATED WORK

Coarse-grained CFI [31], [32], [33], [34] computes a relaxed
CFG, thus allowing more legal jump targets, which leads
to false positives. However, researchers [23] have already
shown that coarse-grained CFI is ineffective in stopping some
real-world exploits. Fine-grained CFI [35], [36], [17], [37],
[38] computes a more accurate Control-Flow Graph. With
a restricted CFG, fine-grained CFI is able to reduce false
positives. Although several works realize fine-grained CFI for
userspace programs [14], [11], they cannot be deployed on
kernel because of heavy overhead or specific requirements.

The complexity of the kernel CFG makes the kernel hard
to analyze and implement CFI policies. Therefore, some
works [39], [15], [25] focus on obtaining the CFG of the
kernel efficiently. Ge and Talele et al. [39] propose a fine-
grained control flow integrity for the kernel. FINE-CFI[15]
reduces the number of average jump targets of a limited set
of indirect calls to 13.14. This work aims to provide a flexible
CFI scheme, which is applicable to protect a larger set of
indirect calls with fewer average jump targets.

VII. CONCLUSION

In this paper, we presented forward-edge FLEX-CFI to
protect the indirect calls in the kernel. FLEX-CFI is a flexible
design to implement CFI given a fine-grained CFG. It analyzes
the data flow for groups to build complete jump targets for
indirect calls. The evaluation results show that FLEX-CFI
is able to protect 92% of all indirect call-sites for kernel
allyesconfig, while reducing 93.5% of possible jump targets,
and introducing close-to-zero performance overhead.

VIII. ACKNOWLEDGEMENTS

We would like to thank all reviewers for their insightful
comments that greatly helped improve our paper. This work
is partially supported by the National Key R&D Program of
China (No. 2022YFE0113200).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 340–353. [Online].
Available: https://doi.org/10.1145/1102120.1102165

[2] ——, “Control-flow integrity principles, implementations, and applica-
tions,” ACM Transactions on Information and System Security (TISSEC),
vol. 13, no. 1, pp. 1–40, 2009.

[3] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “{Control-
Flow} bending: On the effectiveness of {Control-Flow} integrity,” in
24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
161–176.

[4] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“Hcfi: Hardware-enforced control-flow integrity,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
2016, pp. 38–49.

[5] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, pp. 1–33, 2017.

[6] H. Xiang, Z. Cheng, J. Li, J. Ma, and K. Lu, “Boosting practical control-
flow integrity with complete field sensitivity and origin awareness,” in
Proceedings of the 31st ACM Conference on Computer and Communi-
cations Security, 2024.

[7] L. Maar, P. Nasahl, and S. Mangard, “Beyond the edges of kernel
control-flow hijacking protection with hek-cfi,” in Proceedings of the
19th ACM Asia Conference on Computer and Communications Security,
2024, pp. 1214–1230.

[8] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 927–940.

[9] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 914–926.

[10] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 131–148.

[11] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 1470–1486.

[12] V. Duta, C. Giuffrida, H. Bos, and E. Van Der Kouwe, “Pibe: prac-
tical kernel control-flow hardening with profile-guided indirect branch
elimination,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 743–757.

[13] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), 2019, pp.
95–110.

[14] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 195–211.

[15] J. Li, X. Tong, F. Zhang, and J. Ma, “Fine-cfi: Fine-grained control-
flow integrity for operating system kernels,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 6, pp. 1535–1550, 2018.

[16] A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P.
Kemerlis, “Fineibt: Fine-grain control-flow enforcement with indirect
branch tracking,” in Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, 2023, pp. 527–546.

[17] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in {GCC} & {LLVM},” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 941–955.

[18] “Control flow guard for platform security - win32 apps — microsoft
learn,” https://learn.microsoft.com/en-us/windows/win32/secbp/contro
l-flow-guard, (Accessed on 10/06/2024).

[19] Google, “Control flow integrity,” 2020, https://source.android.com/dev
ices/tech/debug/cfi.

[20] L. Becker, M. Hollick, and J. Classen, “{SoK}: On the effectiveness of
{Control-Flow} integrity in practice,” in 18th USENIX WOOT Confer-
ence on Offensive Technologies (WOOT 24), 2024, pp. 189–209.

[21] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “{PAC} it up: Towards pointer integrity using {ARM}
pointer authentication,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 177–194.

[22] S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim, “{In-Kernel}{Control-
Flow} integrity on commodity {OSes} using {ARM} pointer authen-
tication,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 89–106.

[23] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), 2014, pp. 401–416.

[24] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang,
“Pex: A permission check analysis framework for linux kernel,” in
28th {USENIX} Security Symposium ({USENIX} Security 19), 2019,
pp. 1205–1220.

[25] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[26] D. Liu, S. Ji, K. Lu, and Q. He, “Improving Indirect-Call
analysis in LLVM with type and Data-Flow Co-Analysis,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 5895–5912. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-din
ghao-improving

[27] Qualcomm, “Dragonboard 845c,” 2020, https://www.96boards.org/doc
umentation/consumer/dragonboard/dragonboard845c.

[28] Google, “Control flow integrity in the android kernel,” 2020, https:
//android-developers.googleblog.com/2018/10/control-flow-integrity-i
n-android-kernel.html.

[29] M. Bauer, I. Grishchenko, and C. Rossow, “Typro: Forward cfi
for c-style indirect function calls using type propagation,” in
Proceedings of the 38th Annual Computer Security Applications
Conference, ser. ACSAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 346–360. [Online]. Available:
https://doi.org/10.1145/3564625.3564627

[30] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace, and X. Jiang,
“Comprehensive and efficient protection of kernel control data,” IEEE
Transactions on Information Forensics and Security, vol. 6, no. 4, pp.
1404–1417, 2011.

[31] V. Pappas, “kbouncer: Efficient and transparent rop mitigation,” Apr,
vol. 1, pp. 1–2, 2012.

[32] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “Ropecker:
A generic and practical approach for defending against ROP
attacks,” in 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014. [Online]. Available:
https://www.ndss-symposium.org/ndss2014/ropecker-generic-and-pract
ical-approach-defending-against-rop-attacks

[33] I. Fratrić, “Ropguard: Runtime prevention of return-oriented program-
ming attacks,” Technical report, Tech. Rep., 2012.

[34] M. Zhang and R. Sekar, “Control flow integrity for {COTS} binaries,”
in 22nd {USENIX} Security Symposium ({USENIX} Security 13), 2013,
pp. 337–352.

[35] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[36] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,” in 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[37] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh, “Cryptograph-
ically enforced control flow integrity,” arXiv preprint arXiv:1408.1451,
2014.

[38] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, vol. 26, 2015, pp. 27–30.

[39] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2016, pp. 179–194.

