Characterizing the Security of GitHub CI Workflows

USENIX SEC'22 | Scooped our Submission | Prepublication →

Igibek Koishybayev ¹, Aleksandr Nahapetyan ¹, Raima Zachariah ³, Siddharth Muralee ², Bradley Reaves ¹, Alexandros Kapravelos ¹, Aravind Machiry ² July 29, 2022

¹North Carolina State University

²Purdue University

³Independent Researcher

Table of contents

- 1. 研究背景与动机
- 2. 经验性研究
- 3. 数据分析
- 4. 两篇 Paper 的比较
- 5. 启示与改进

Before the Paper

- · RQ 驱动类型的 Paper (Trending in Security)
- Phenomenal Topic (e.g. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions →)

研究背景与动机

背景

图 1: An overview of CI/CD pipelines.

安全威胁

图 2: Threat Model

Contribution

- Security properties (SP)
- Analysis of the five most popular CI/CD platforms
- · Attack scenario through third-party scripts hosted on GitHub
- 18% of repositories in dataset use vulnerable third-party scripts

Research Questions

- 1. What are the **security properties** that need to hold to have a secure CI/CD?
- 2. How does GitHub CI compare to other public CI/CD platforms according to SPs?
- 3. How does usage behavior of workflows affect GitHub CI SPs?

经验性研究

Answer to RQ1: Security Properties

利用最小权限原则总结出的影响 [工作流的安全要素。

- ・ Admittance Control (AC): 管理 CI 工作流;
- ・Execution Control (EC): 触发 CI 工作流;
- ・ Code Control (CC): 控制 CI 的内容;
- ・Access to Secrets (AS): 管理密钥;

Answer to RQ2: Permissions

	Permissions			
CI/CD Platforms	Code read	Code write		
TravisCI	•	O _×		
CircleCI	•	O×		
Jenkins	•	●×		
Gitlab CI external	•	O×		
Gitlab CI internal	•	0*		
GitHub CI	•	•×		

绿勾代表对 SP 有益, 红叉代表对 SP 有害。

Answer to RQ2: Scripting

	Plugins					
CI/CD Platforms	First-party	Third-party	Mutable	Review		
TravisCI	•	O×	0	O×		
CircleCI	•	•×	0*	O×		
Jenkins	0*	●×	0	O×		
Gitlab CI external	•	0*	0	O×		
Gitlab CI internal	•	0*	0	O×		
GitHub CI	•	•×	•×	O×		

表格中的 Plugins 即为 Scripts 的意思, Mutable 代表 Scripts 是否可以被平台更新, 绿勾代表对 SP 有益, 红叉代表对 SP 有害。

Answer to RQ2

		TravisCI	CircleCI	Jenkins	Gitlab CI extrernal	Gitlab CI internal	Github CI
	(C1) Contributor can add workflow	•	•	•	•	•	•
Admittance Control	(C2) CI/CD run can NOT add new workflow	•	•	0	•	•	Ow.
(C3) Executes workflow from PR	(C3) Executes workflow from PR only after merge	•	•	0	•	•	\bigcirc w
Execution Control	(C4) Contributors can modify the triggers	•	•	•	•	•	•
	(C5) CI/CD run can NOT modify the triggers	•	•	0	•	•	Ow.
Code Control	(C6) CI/CD run can NOT modify the code	•	•	0	•	•	On.
	(C7) CI/CD run is deterministic based on config	•	•	•	•	•	Ow.
	(C8) Masked	•	•	•	•	•	•
	(C9) Accessible only to explicitly authorized steps	0	0	•	•	•	0
	(C10) Restricted from pull requests	•	•	•	•	0	(Ju)

表格中的红色代表对 SP 有害,W 上标表示该属性是 workflow-dependent 的 (即 sementic 的)。

数据分析

数据收集

GHArchive **→**

GitHub REST API

11,438 Scripts

213,854 Repositories

Workflows

- Workflow Permissions only 0.2% of all workflows use permissions Workflow Triggers 51.7% of public repositories run on self-hosted
- machines can be triggered by PR
- Workflow Secrets Third-party scripts can access the secrets & Some developers pass the secrets in plain text to allow forked versions to run the workflows

Third-party Scripts

- **Verified vs Unverified Scripts** The majority of the scripts are from non-verified creators (97%).
- **Third-Party Scripts'** References Developers do not reference Third-party scripts by using commit hash, despite the security risks.
- Vulnerability Analysis 38,315 or 17.9% use at least one potentially vulnerable scripts due to not upgrading the version.

在漏洞分析中使用了git-vuln-finder ➡, 通过 Git Commit Log 寻找可能的漏洞。

两篇 Paper **的比较**

两篇 Paper 的比较

对比项	USENIX SEC'22	Our paper	
包装 & 抽象	Security Properties	X	
主次 Domain 处理	对比法	×	
对 Vulnerablities 的分析	git-vuln-finder	已有的 CVE	
炫技性质的工具	GWChecker	×	

Next Paper

基本风格 检测 + Measurement
PoC Writing
学习方法论 静态分析的基本原理 & codeql 的使用
Measurement 基于静态分析的结果做 Measurement
参考 Probe the Proto ➡

谢谢大家,敬请指正!